“The Best” Disease You’ve Never Heard Of: A Tale of Two Patients

Juan Ding, OD, PhD

When people think of inherited eye diseases, they usually imagine problems that show up in babies or childhood, with both eyes blind. But what if I told you the same rare eye condition can show up in kids as well as the elderly — and affecting two eyes differently?

Recently, I saw two patients who were diagnosed with a condition called Best vitelliform macular dystrophy, more commonly known as Best disease. Despite the name, it’s not exactly “the best” news to receive — though, thankfully, it tends to progress slowly and isn’t typically associated with total blindness.

Let’s start with the little girl. This is a sweet 6-year-old girl who failed school vision screening and referred to our clinic. She reports that she sees everything well, but parents note that she stays close to the TV to watch. After a detailed eye exam and specialized imaging, I diagnosed her with Best disease. She was otherwise completely healthy, with no complaints — though her vision is 20/60 in both eyes.

Interestingly, even though both eyes are not seeing well, they do show very different appearances in photos. Below is the color photo and cross-sectional view of her retina (Figure 1). Her right eye is at the ‘egg yolk’ stage, while the left eye has already progressed to the late, or advanced stage of macular atrophy. My heart goes out to the family. She is so young, and yet already at the late stage of this disease. Fortunately her vision is not too bad. And that is a common feature of this condition, that vision is typically only moderately impaired even in the late stage.

Figure 1. Photos of retina in a 6 year old girl with Best disease. The two columns represent right and left eye as labeled. A, color photo of the retina with subtle changes in macular appearance. B, autofluorescent black and white photo of the macula area. C, OCT cross-section photo of the macula in both eyes. Yellow arrow points to the ‘egg yolk’ in the macula of the right eye; white arrow points to a thin and atrophied macula in the left eye.

Then came the man in his sixties a week later. The two patients are not related. Just a coincidence that I would see two cases of a rare eye condition in the span of a week in a primary care setting. He started noticing blurry vision in the right eye when he was 50. He came to see us in 2021 but then lost to follow up. It gradually got worse, and now his right eye sees 20/40. His left eye sees 20/20 and no change over the years. Again, imaging confirmed the diagnosis. What is interesting is that you can see that over the 4 years, the right eye has progressed from the ‘egg yolk’ stage to ‘atrophy’ stage; while the left eye has little progression with still early or small ‘egg yolk’.

Figure 2. Cross-section macular photo of a 60 year old man in 2021 and 2025. Yellow arrow points to the ‘egg yolk’; white arrow points to atrophied retina.

So what exactly is Best disease?

This condition is so named not because it’s the best disease a person can have, it’s named after Dr Franz Best, a German ophthalmologist, who described the first pedigree in 1905.

Best disease is a rare genetic condition that affects the macula, the central part of the retina responsible for sharp, detailed vision. It’s caused by mutations in a gene called BEST1 [1], which affects a layer of cells beneath the retina called the retinal pigment epithelium (RPE). This layer helps keep the retina healthy and functioning properly. The prevalence is about 1 in 20,000 [2], so very rare.

The condition often runs in families and usually appears in childhood or adolescence, though some people — like my older patient — might not show symptoms until later in life. However, the adult onset Best disease may also be caused by mutations in genes other than BEST1 [1]. The onset of age ranges from 3-15 years of age [3]. It typically affects both eyes, though in some cases the two eyes show different rate of progression, which happens to be in both my patients.

Best disease is inherited in an autosomal dominant manner, meaning if there is one faulty gene, the disease will manifest. Therefore if one person has the disease, some of their family members are likely to have it too. But the degree and extensiveness of the disease can be quite variable among individuals [1], sometimes even with the condition, the person may not have any symptoms.

Interestingly, for both of my patients, they report no knowledge of any family history of low vision or blindness. I highly recommend the direct relatives to have a comprehensive eye exam with retinal imaging – the most important being the fundus imaging and OCT which can show cross section of the retina tissue. This technology can show the most striking feature, the yellowish lesion in the macula that looks a bit like an egg yolk — which is why doctors often call it a “vitelliform lesion.” You can see these lesions in the girl and the man in Figures 1 and 2 above. Over time, this lesion can change shape, break up, or leak fluid, leading to vision changes. In late stages, the macula becomes atrophied, meaning the tissue dies and thins out.

Can it be treated?

There’s no cure for Best disease, but the good news is that many people maintain useful vision throughout their lives. Regular monitoring is key to catching any complications early, especially if fluid builds up or if abnormal blood vessels form — in which case treatment might involve medications or laser therapy.

Recently, people are attempting gene therapy of this condition in dog models [4]. Hopefully gene therapy becomes available in the future in humans affected by this condition.

Why does this matter?

These two patients — so different in age and life stage — are a reminder that eye disease doesn’t always follow predictable rules. For example, Best disease usually affects both eyes, but these two patients both show remarkable asymmetry in stages of the disease. Best disease progresses slowly, and while it is true for the elder man, for the little girl, one eye is already at advanced stage. Given her young age, I imagine the progression has been fast.

And while it may not be “the best” diagnosis to receive, with proper care and awareness, patients can still live full, visually rich lives.

References and extended readings

[1] https://eyewiki.org/Best_Disease_and_Bestrophinopathies

[2] Tripathy K, Salini B. Best Disease. [Updated 2023 Aug 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537290/

[3] https://emedicine.medscape.com/article/1227128-overview#:~:text=gender%20predilection%20exists.-,Age,occurs%20after%20age%2040%20years.

[4] Amato A, Wongchaisuwat N, Lamborn A, Schmidt R, Everett L, Yang P, Pennesi ME. Gene therapy in bestrophinopathies: Insights from preclinical studies in preparation for clinical trials. Saudi J Ophthalmol. 2023 Dec 1;37(4):287-295. doi: 10.4103/sjopt.sjopt_175_23. PMID: 38155675; PMCID: PMC10752275.

孩子还没近视,能用低浓度阿托品预防吗?

丁娟

讲一讲阿托品和近视,这是一个有点长的故事。

太长不想看版

1. 今年2月的研究发现与安慰剂和0.01%阿托品相比,未近视儿童使用0.05%阿托品的近视发生率显著降低,但不代表能照搬实验,常规用于预防近视。

2.阿托品与控制近视的研究在不断进行,根据之前的研究,虽然阿托品的浓度越高,控制效果越好,但会伴随副作用增加,并且在停药后会出现近视反弹的现象。

3.目前对于已近视的儿童,常用于控制近视的阿托品为低浓度(0.01% ~0.05%),具体用药需要在医生指导下进行,家长不要自行尝试。

新的研究是什么? 

今年2月,香港中文大学发表了一篇论文[1],这是一个随机对照双盲研究,研究两种不同浓度的低浓度阿托品对于眼睛尚未近视的儿童使用,是否能够延缓近视的发生。

参与人:400多名4-9岁、眼睛屈光度数0-100度远视的儿童

分组:共3组,安慰剂组、0.01%阿托品组、0.05%阿托品组

随访2年分析数据后发现:

  • 安慰剂和0.01%阿托品组,近视的发生率并没有统计意义上的显著区别。
  • 0.05%阿托品组的近视发生率显著降低。

文章发表后,有人产生疑问,之前不是0.01%阿托品能够控制近视增长吗?为什么在这个实验中对于没有近视的儿童起不到作用呢?

那我们是不是根本不应该使用0.01%的阿托品,而应该直接使用0.05%呢?

要探讨这个问题,我们需要先了解一下阿托品用来控制近视的历史。

1%阿托品的研究

几十年以前人们就发现1%阿托品可以控制近视的增长。不过,比较好的证据,比如随机双盲临床研究直到2006年才发表。

这是一项在新加坡进行的临床研究,证实了1%阿托品使用2年可以良好地控制近视的进展[2]

但它的副作用也非常明显。1%的阿托品是用来散瞳进行眼底检查或者散瞳验光的一个常用药物,它能够有效地将瞳孔散大,并且使眼睛完全丧失调节力,所以在用药期间眼睛会比较害怕光,并且由于不能调节,看近处非常模糊。

这个副作用使得1%阿托品用来控制近视不太现实。

几乎没有人能够忍受这样的副作用,尤其是考虑到近视控制是以年为单位计算的,大多数情况需要用到16~18周岁之间(这时候近视的发展大大减慢了,多数儿童近视停止增长)。

并且后续的研究还发现停用后近视反弹惊人[3],也就是说近视速度比正常情况下增长得还要更快。

0.01%阿托品的应用

2012年新加坡的研究人员发表了一篇论文[4],他们研究除了1%阿托品以外,是否别的浓度阿托品也可以起到控制近视的作用,而且散瞳的副作用没那么明显。

他们研究了0.5%、0.1%和0.01%这些浓度,发现阿托品和控制近视的效果成浓度正相关的关系,也就是说浓度越高控制近视的效果越好,当然副作用也越大。

另外一个让他们比较惊讶的研究结果是,0.01%阿托品(相当于把1%阿托品稀释100倍)仍然能够起到控制近视的效果,而且0.01%阿托品副作用非常低,虽然也有一些散瞳以及丧失调节的副作用,但是绝大多数儿童都能够正常地学习和生活。

研究观察了两年,在第3年的时候,所有儿童都停止使用阿托品,研究想看一下在停止使用之后近视会不会继续增长。

结果发现,浓度较高的阿托品(0.5%和0.1%)在停止之后,儿童的眼睛近视产生了反弹。但是相比之下,0.01%阿托品却没有出现这种反弹的现象[5]

因为这个研究,很多亚洲国家开始试行给近视儿童使用0.01%阿托品来进行控制。

同时大家也对浓度高的阿托品(浓度大于0.1%)有所注意,使用这些高浓度的不仅副作用大,而且停用可能还会反弹。

其它浓度的阿托品效果怎么样?

上面的研究发表后,有人开始思考其他浓度的阿托品呢?比如说低于0.1%,但是高于0.01%这个浓度范围,是否对于控制近视也有效果,是否副作用也比较轻,同时会不会导致停用后近视反弹呢?

2020年香港中文大学的研究人员对于这个问题发表了论文[6]。他们招募已经发展近视的儿童,将他们随机分配在安慰剂和0.01%、0.025%、0.05%这几个浓度的阿托品组别。

研究有同样的发现,阿托品控制近视的效果有一个浓度关系,仍然是浓度越高控制的效果越好,也就是说0.05%阿托品控制近视的效果要比0.025%好,而0.025%阿托品控制近视效果又比0.01%的好。而且,相比安慰剂来讲,0.01%阿托品仍然能够起到控制近视的效果。

研究还测试了儿童眼睛调节能力,以及瞳孔大小受这几种不同浓度阿托品的影响。结果发现也是和浓度相关的,也就是说浓度越高副作用的确是越大。不过,即使是0.05%阿托品,大多数儿童也还是能够承受的。

进行两年研究后,他们也进行了停止使用药物1年,来观察近视是否会反弹。结果发现也和阿托品的浓度有关,浓度稍微高一点的,比如0.05%的,反弹的稍微多一点,当然这个反弹远远要比之前使用更高浓度阿托品的反弹要小得多,反弹最低还是0.01%的[7]

因此目前在控制近视这方面,会普遍使用阿托品浓度为0.05%或者更低的,而不推荐浓度更高的阿托品。尤其是控制近视还有别的办法,比如角膜塑形镜、周边离焦镜框眼镜、多焦距的软隐形眼镜,所以并没有必要上高浓度的阿托品,给生活和学习造成很大不便。

考虑到阿托品的长期安全性还在研究中,大家本着尽量减少药物暴露的这个原则,尽量使用“浓度比较低,时间不要太长”的方法。

另外,停用之后的反弹现象也是需要重视的。从这个角度来讲,0.01%阿托品还是一个不错的选择。

关于新研究的思考:

可以照搬实验方案用吗? 

之前的这些研究都是在已经发生近视的儿童上进行实验的,新的研究是在未近视的儿童中进行。

我们中国的家长在“鸡娃”上卷得非常厉害,不仅在学习方面要卷,在孩子近视的控制上,也要求不能输在起跑线上。

所以新的研究出来之后,越来越多的家长问,既然低浓度阿托品能够有效地控制近视增长,那我能不能在孩子还没近视的时候就用,也许他就永远都不会近视了,不是更好吗?

1.对于新研究的理解

从香港中文大学发布的研究结果能够看出,在未近视儿童中,延缓近视发生的效果和阿托品浓度是有关系的。

这个研究遗憾的是缺少浓度为0.02%。从研究数据看,0.01%阿托品组比安慰剂组要好一些(图1),但这个结果未能达到统计学意义上的显著性。0.05%阿托品组的效果是显著的。

图1 | 累计近视发生率图表[1]

注:

1.蓝线是安慰剂组,黑线是0.01%阿托品组,橘黄线是0.05%阿托品组。

2.横坐标是随访时间,从开始到24个月。纵坐标是累计近视的比例,最开始所有的儿童都没有近视(数值为0),随着时间越来越多的儿童产生近视,0.6代表60%的儿童发生近视。

从这一点上,我认为这个研究结果与之前的研究还是比较吻合的,也就是说浓度越高,阿托品的效果越好。这点很好理解,符合逻辑,也有大量数据支持。

另外,虽然这个研究发现0.01%阿托品和安慰剂效果类似,但是有小样本研究发现,即使是0.01%阿托品(和安慰剂相比)也可以在近视之前就延缓眼轴的增长和降低近视的发生率[8]

其次,如果我们仔细分析一下数据可以看到,经过两年的干预,0.05%阿托品组的儿童中仍然有大约28.4%的儿童发生近视。0.01%阿托品组的儿童中是45.9%发生近视,而在使用安慰剂的儿童中53%发生近视。

在这些尚未发展近视的儿童中,有接近一半的儿童即使在使用安慰剂的情况下,也并没有发展近视。这告诉我们什么呢?

这说明并不是所有的儿童都会在两年之内发生近视。那也就是说,即使是使用了0.05%阿托品的那一组儿童中,可能有一半的儿童根本不需要使用,也不会发展近视。

另一方面,0.05%阿托品的确能够在两年内降低未近视儿童的近视发生率,延缓近视发生,但并非能够完全做到避免近视的发生。

2.现实中可以照搬用吗?

现实生活和研究自然有很大区别。

在研究中,一个孩子被随机分配到一种治疗方案当中。根据研究设定的时间,比如说在这种情况下是观察两年来看一下孩子眼睛的发展情况。

而现实生活中,我们当然不可能将一个固定的方法用在一个孩子身上,而不管这个方法本身的作用如何。

比如说在现实生活中,我们可能给一个孩子用0.01%阿托品来进行近视的控制。如果观察发现控制效果不太好的话,很可能就换到别的方法了,如增加阿托品的浓度、换成角膜塑形镜或者其它方法,而不是机械地继续用这个方法进行下去。

因此一个研究带给我们的启示主要是治疗方法本身的效果和安全性。根据这个信息我们来衡量给病人怎么进行治疗,并不是机械地照搬研究结果。

总结

1.关于阿托品与近视,我们知道这些:

  • 阿托品能够有效地控制近视发展,这个效果和浓度相关,浓度越高效果越好,但是浓度越高副作用也越大,同时停用之后反弹也会越多。
  • 0.01%~0.05%的低浓度阿托品安全性相对来说都比较好,大多数儿童能够承受副作用。
  • 在没近视的儿童中使用低浓度阿托品,可以降低近视的发生率,同样是浓度高一点,效果会更好。但目前这个研究仅在4-9岁的儿童中进行,并且随访暂时只有两年(目前处于随访的第3年,为评估长期效果,预计随访6年)。

2.阿托品的应用:

  • 还没近视

即使有研究,也不意味着在孩子没近视的时候,不管三七二十一就能使用0.05%阿托品。

考虑到研究中安慰剂组有47%的儿童即使不用任何方式在两年内也并没有发生近视。如果直接盲目地给每个孩子都使用0.05%阿托品,相当于给接近一半的儿童增加了不必要的药物暴露。

对于那些眼轴增长比较快、远视储备在迅速下降的儿童,同时父母也有近视,遗传方面因素不利的,如果父母和儿童有着强烈的意愿来延缓近视的发生,也许可以考虑使用阿托品。

但是对于一个远视储备比较稳定、眼轴增长正常的孩子来讲,就没有必要了。定期观察,在发现变化之后再进行干预会更安全。

  • 已经近视

即使是在儿童发生近视以后,用什么样的浓度来控制,也是一个个性化的治疗过程。

0.01%阿托品的确能够降低近视增加的速度,这在很多临床实验中都已经证实。一个比较合理的考虑是发展近视以后使用0.01%阿托品来进行控制,规律地观察6个月到1年,如果效果不好,那么提高到0.05%,或者额外加上/或更换别的控制模式。

的确有很多儿童在单独使用0.01%阿托品之后,就能够有效地控制近视。而这个方法停用之后的反弹是最小的,副作用也是最小的。如果直接使用比较高的浓度,而不先尝试一下低浓度,就没法知道孩子是否只需要低浓度就可以有效控制近视,这样也不利于减少药物暴露。

因此,对于某个儿童个体,使用什么样的方法来延缓近视的发生或控制近视,应该是一个针对儿童自身以及家庭情况来做的个性化方案,并不是照搬研究结果。

作为家长,可以和医生详细地沟通一下,制定一个适合孩子自己的个性化的治疗方案,而并不是盲目地跟风使用一个浓度比较高的阿托品来进行控制。

3.家长可能还会问,去哪里买低浓度阿托品吗?

目前中国国内低浓度阿托品没有上市的制剂,只有院内制剂,又因为相关的药品管理法规,无法在网上购买,家长只能够去部分医院现场开取。

在美国,低浓度阿托品可以通过视光医生或者眼科医生开具处方,从特殊的药房(compounding pharmacy)购买。

参考文献

[1]Yam JC, Zhang XJ, Zhang Y, et al. Effect of Low-Concentration Atropine Eyedrops vs Placebo on Myopia Incidence in Children: The LAMP2 Randomized Clinical Trial. JAMA. 2023;329(6):472–481. doi:10.1001/jama.2022.24162

[2]Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113: 2285e2291.

[3]Louis Tong, Xiao Ling Huang, Angeline L.T. Koh, Xiaoe Zhang, Donald T.H. Tan, Wei-Han Chua, Atropine for the Treatment of Childhood Myopia: Effect on Myopia Progression after Cessation of Atropine, Ophthalmology,vVolume 116, Issue 3, 2009

[4]Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119:347e354

[5]Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol. 2014;157:451e457.e1.

[6]Yam JC, Li FF, Zhang X, et al. Two-year clinical trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology. 2020;127: 910e919

[7]Yam JC, Zhang XJ, Zhang Y, Wang YM, Tang SM, Li FF, Kam KW, Ko ST, Yip BHK, Young AL, Tham CC, Chen LJ, Pang CP. Three-Year Clinical Trial of Low-Concentration Atropine for Myopia Progression (LAMP) Study: Continued Versus Washout: Phase 3 Report. Ophthalmology. 2022 Mar;129(3):308-321. doi: 10.1016/j.ophtha.2021.10.002. Epub 2021 Oct 7. PMID: 34627809.

[8]Wang W, Zhang F, Yu S, Ma N, Huang C, Wang M, Wei L, Zhang J, Fu A. Prevention of myopia shift and myopia onset using 0.01% atropine in premyopic children – a prospective, randomized, double-masked, and crossover trial. Eur J Pediatr. 2023 Jun;182(6):2597-2606. doi: 10.1007/s00431-023-04921-5. Epub 2023 Mar 22. PMID: 36944782.